A chlorophyll a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina.
نویسندگان
چکیده
Adaptation of the halotolerant alga Dunaliella salina to iron deprivation involves extensive changes of chloroplast morphology, photosynthetic activities, and induction of a major 45-kDa chloroplast protein termed Tidi. Partial amino acid sequencing of proteolytic peptides suggested that Tidi resembles chlorophyll a/b-binding proteins which compose light-harvesting antenna complexes (LHC) (Varsano, T., Kaftan, D., and Pick, U. (2003) J. Plant Nutr. 26, 2197-2210). Here we show that Tidi shares the highest amino acid sequence similarity with light-harvesting I chlorophyll a/b-binding proteins from higher plants but has an extended proline-rich N-terminal domain. The accumulation of Tidi is reversed by iron supplementation, and its level is inversely correlated with photosystem I (PS-I) reaction center proteins. In native gel electrophoresis, Tidi co-migrates with enlarged PS-I-LHC-I super-complexes. Single particle electron microscopy analysis revealed that PS-I units from iron-deficient cells are larger (31 and 37 nm in diameter) than PS-I units from control cells (22 nm). The 77 K chlorophyll fluorescence emission spectra of isolated complexes suggest that the Tidi-LHC-I antenna are functionally coupled to the reaction centers of PS-I. These findings indicate that Tidi acts as an accessory antenna of PS-I. The enlargement of PS-I antenna in algae and in cyanobacteria under iron deprivation suggests a common limitation that requires rebalancing of the energy distribution between the two photosystems.
منابع مشابه
NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina.
Light could induce phosphorylation of light harvesting chlorophyll a/b binding proteins (LHCII) in Dunaliella salina and spinach thylakoid membranes. We found that neither phosphorylation was affected by glycerol, whereas treatment with NaCl significantly enhanced light-induced LHCII phosphorylation in D. salina thylakoid membranes and inhibited that in spinach. Furthermore, even in the absence...
متن کاملCharacterization of three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II isolated from the green alga, Dunaliella salina.
Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells...
متن کاملتقویت اثر شوری توسط امواج فراصوت بر رشد و تولید متابولیت در سلولهای Dunaliella salina
Manipulating cell cultures by elicitors is one of the important strategies for induction of valuable metabolites in plant biotechnology. Therefore, in this study the effect of ultrasound and salinity on growth, primary and secondary metabolite production was studied in Dunaliella salina microalgae cell culture. Cell cultures were treated with sodium chloride salt at concentrations of 2 and 3 M ...
متن کاملتأثیر آهن بر کارایی و نقشه عملکرد فتوشیمیایی سیستم فتوسنتزی II گل رز با استفاده از روش تصویر برداری کلروفیل فلورسنس
Interveinal chlorosis induced by iron deficiency is considered to be one of the problems in rose production in greenhouses all over the world. This experiment was conducted to elucidate the capability of chlorophyll fluorescence imaging technique to recognize early iron deficiency and also determination of relationship between leaf iron concentration and leaf chlorophyll content index and photo...
متن کاملIron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferrin.
A 150-kDa transferrin-like protein (Ttf) is associated with the plasma membrane of the halotolerant unicellular alga Dunaliella salina (Fisher, M., Gokhman, I., Pick, U., and Zamir, A. (1997) J. Biol. Chem. 272, 1565-1570). The Ttf level rises with medium salinity or upon iron depletion. Evidence that Ttf is involved in iron uptake by Dunaliella is presented here. Algal iron uptake exhibits cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 15 شماره
صفحات -
تاریخ انتشار 2006